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1. Introduction

China and its surrounding regions are one of the most seismically active
intracontinental regions on Earth. The active seismicity, especially in western
China, is associated with the late Cenozoic continental collision between the Indian
and Eurasian plates. This collision not only created the world’s largest mountain
system and plateau, the Himalayas and Tibetan Plateau, but also reactivated old
mountain belts such as the Tien Shan and Altay Mountains (Molnar and
Tapponnier, 1975). Prior to the Himalayan orogeny, the tectonic framework of
China evolved through a series of collisional events among continental blocks and
island arcs since the Cambrian age (e.g., Sengor, 1987; Yin and Nie, 1996).
Microcontinents and island arcs in the Tethyan oceans have also contributed
significantly to the formation of the Asian continent. These continental and oceanic
fragments include the Sino-Korean block, Yangzi block, Mongolian island arcs,
Tarim block, Qiangtang block and Lhasa block (Figure 1). The continental blocks,
consisting of metamorphic basement rocks as old as the early Archean (Liu et al.,
1992), are not significantly deformed. In contrast, the fold belts that lie between
the ancient blocks are highly deformed and exhibit very different physical
properties than the crust of the old cratons. Through subduction during the
Paleozoic, Mesozoic and Cenozoic time, much of the upper mantle beneath
Mongolia, Inner Mongolia, Tibet and Southeast China has been enriched by residual
melts and metasomatizing fluids. The modified mantle may have been hydrated and
hence, was probably buoyant relative to the underlying mantle. The residence time
for this less dense mantle could have been a very long time (Anderson, 1995).
This buoyant mantle, when subjected to either extensional or compressional strain
energy during a later tectonic event, could be in an extensive state of partial melt.
The seismic phenomenon associated with a partially melted uppermost mantle is
the absence of high-frequency Sn waves.

The tectonic history of China also plays an important role in Lg attenuation.
Major changes in the crustal waveguide and thickness as well as partial melt in the
crust can be linked to present as well as previous tectonic orogenies and these
features may cause the blockage of Lg. It is a well known phenomenon that Lg is
weakened by scattering and crustal heterogeneities (e.g., Knopoff et al, 1973;
Bouchon, 1982; Kennett, 1985), however, it may not be completely extinguished
by these effects. Husebye and Ruud (1996) have shown that the attenuation of
crustal Lg waves in the North Sea grabens is directly related to the intrinsic
attenuation of a partially melted crust. Therefore, it is likely that a combination of
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Figure 1. A simplified tectonic map of China and its surrounding regions. Dark lines separate
the major tectonic provinces in the region. Triangles represent the direction of oceanic sub-
duction. (FS-Fold System, IA-Island Arc, MTS-Mountains) (modified from Huang et al.,
1987; Huang, 1979; Coleman, 1989; Chinese Academy of Geological Sciences, 1976)




scattering and partial melt in the crust may explain the complete elimination of the
Lg arrival on regional seismograms.

Since Lg and Sn wave propagation characteristics are diagnostic of crust and
upper mantle properties, respectively, we visually inspect how these waves
propagate in China and its surrounding regions to better understand the active
tectonics of the region. In addition, we examine the relevance of Sn and Lg
propagation efficiencies to the application of discriminants for nuclear test
monitoring. Previously, various high-frequency waves, such as Sn and Lg, have
been used to develop short-period discriminants (e.g. Pomeroy et al., 1982; Taylor
et al., 1989). For example, Pg and Lg amplitude ratios are an indication of the
relative amount of compressional and shear-wave energy radiated from a seismic
source. Low Pg/Lg ratios are often associated with earthquakes because its source
occurs along a planar fault and radiates significant amounts of shear energy relative
to compressional energy; high Pg/Lg ratios are usually associated with explosions
because its source radiates more compressional than shear energy. However, these
phases propagate in different parts of the earth and the regional geology along a
path can alter the relative strength of the signals. This implies that a discriminant
that works effectively in the western United States may not be effective in certain
regions of China. Therefore, the significance of this study is two-fold. First, it is
important to understand how the geology of a region affects Sn and Lg phase
propagation and where attenuation of these phases occurs. Second, this study will
determine which phases or combination of phases may be useful as discriminants
in China for a Comprehensive Test Ban Treaty (CTBT).

This report will examine, classify and map the propagation efficiencies of
high-frequency seismic waves at regional distances in China. Emphasis is focused
on where these waves are attenuated or blocked. This information will be
integrated with our knowledge of what causes efficient or inefficient propagation.
Then we will discuss how the past and recent tectonics of China have influenced
the propagation characteristics. Finally, we will determine the applicability of Sn
and Lg phases to nuclear discrimination in the region. A significant result of this
research shows that a ratio method which uses short-period Sn would not be a
useful discriminant in China since it is attenuated or weakened in a majority of the
regions.




2. Data

The data for this study were digitally recorded by the Chinese Digital
Seismic Network (CDSN) and retrieved through the Incorporated Research
Institutions for Seismology - Data Management Center (IRIS-DMC). The CDSN
network (Figure 2), which began operation in October 1986, consists of 11
three-component, broadband stations spread geographically throughout China. Data
from two stations of the Global Seismic Network (GSN) were also included in our
study. Table 1 summarizes the information about all 13 seismic stations we have
studied. The digital, broadband data were collected in event-triggered mode at a
sampling rate of 20 samples per second. All the stations were equipped with either
Streckseisen Model STS-1, STS-1/VBB or STS-2/VBB three-component sensors.
The amplitude response of the sensors was flat between 0.1 and 10 Hz. Event
origin times and locations were taken from the Preliminary Determination of
Epicenters (PDE) catalogs distributed by the U.S. Geological Survey (USGS). Our
objective was to look at regional, crustal seismic events with a high signal-to-noise
ratio. Therefore, the criteria for our database were chosen such that we extracted
all events having epicentral distances between 2° and 20°, the complete range of
azimuths, body wave magnitudes greater than 4.3 and depths less than 50 km. The
data presented in these results are for events with epicentral distances between 2°

and 15°.

3. Method of Analysis

In this study, we will investigate the propagation efficiencies of the
high-frequency regional phases Pn, Sn and Lg. Pn is the first arrival on regional
seismograms for distances greater than about 3°. Pn wave transmission has been
modeled as whispering gallery waves trapped in a waveguide comprised of a
high-velocity mantle lid with a low-velocity zone beneath it (Menke and Richards,
1980). The shear-wave counterpart of Pn in the mantle is Sn. The Sn phase has
been studied in terms of normal modes of Love waves with the mantle lid acting
as a waveguide (Stephens and Isacks, 1977). Due to the shear-wave nature of Sn,
it is diagnostic of lateral variations of attenuation caused by heating and partial melt
in the upper mantle. Therefore, we have emphasized our efforts on determining the
transmission efficiency of Sn rather than Pn. Efficient propagation of Sn has
usually been observed in the uppermost mantle beneath stable shield regions (e.g.,
Bath, 1966; Brune and Dorman, 1963).
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Figure 2. A station location map for the Chinese Digital Seismic Network (CDSN)
stations we investigated. Black triangles represent station locations. Gray lines
represent 2000m and 4000m elevation contours. There are two Global Seismic
Network (GSN) stations we have also included - TLY (Lake Baikal) and CHTO
(Thailand). (see Table 1 for complete listing)




Table 1

Summary of the CDSN and GSN stations under study. The network name and station

name, their geographic locations and the period of data we obtained for them are listed.

Network Name Station Name Station Location Years

CDSN BJI Beijing, China 1988 - 1994
GSN CHTO Chiang Mai, Thailand 1992 - 1995
CDSN ENH Enshi, China 1989 - 1994
CDSN HIA Hailar, China 1988 - 1994
CDSN KMI Kunming, China 1988 - 1994
CDSN LSA Lhasa, China 1991 - 1994
CDSN LZH Lanzhou, China 1988 - 1994
CDSN MDJ Mudanjiang, China 1988 - 1994
CDSN QIZ Qiongzhong, China 1992 - 1994
CDSN SSE Shanghai, China 1989 - 1994
GSN TLY Talaya, Russia 1991 - 1994
CDSN WMQ Urumgi, China 1988 - 1994
CDSN XAN Xi’an, China 1992 - 1994




Lg is a high-frequency, large amplitude wavetrain seen at regional distances
from 2° to 25°. Lg travels in a group velocity window of 3.7-3.2 km/s and is
indicative of stable shield regions. Lg was first interpreted as a higher-mode
shear-wave propagating in a crustal waveguide consisting of a granitic layer (Press
and Ewing, 1952). Press and Ewing (1952) also revealed that Lg does not
propagate across paths with more than 100 km of oceanic crust. Numerical
modeling techniques of elastic wave propagation in a vertical heterogeneous crust
have shown Lg as a superposition of S-waves that are multiply reflected within the
crust and incident on the Moho at a post-critical angle (Bouchon, 1982). Lg
propagation is sensitive to crustal thickness and waveguide variations (e.g.,
Ruzaikin et al., 1977; Campillo, 1987), however, Lg may not be eliminated
completely by these features alone. Blockage of Lg is observed for paths across
the North Sea graben structures but crustal thinning is insufficient for explaining
the absence of Lg (Husebye and Ruud, 1996). To model Lg blockage to the extent
seen on seismograms, a very low Q crust of the order of 100 at 2 Hz is needed for
the graben crust. The significance of Lg to this study then is that it provides
information about the average shear-wave velocity and attenuation of shear energy
of the crust along its path.

The propagation characteristics of Pn, Sn and Lg were used to constrain
structure and provide insights into the tectonic processes in China and its adjacent
regions. Previous studies (e.g., Ruzaikin ez al., 1977; Kadinsky-Cade et al., 1981,
Ni and Barazangi, 1983; Rodgers et al., 1997) analyzed short-period analog
seismograms to qualitatively characterize broad tectonic provinces and subprovinces
in terms of either efficient or inefficient Pn, Sn and Lg propagation. We have used
a similar empirical approach for documenting the efficiencies of observed regional
phases. Over 7000 digital, broadband seismograms were examined in total from all
of the stations. All three components of the seismograms were bandpass filtered
between 0.5-5.0 Hz. The high-frequency content of Sn and Lg signals varied
between 0.5-3.0 Hz from station to station. The instrument responses were not
taken out of the data so all data were analyzed as raw velocity seismograms.
P-wave arrivals were manually picked only on the vertical component. We used
a 8.2-6.0 km/s group velocity window to pick Pn and Pg. Sn and Lg were picked
manually on the horizontal transverse components. A group velocity window of
4.7-4.3 km/s was used for picking Sn and a 3.7-3.2 km/s velocity window was used
for picking Lg. The propagation efficiencies of Sn and Lg were ranked according
to their amplitudes relative to the P-wave coda amplitude. Sn and Lg amplitudes
greater than the amplitude of the P coda were classified as efficient. Sn and Lg
amplitudes approximately one-half the amplitude of the P coda or less were




classified as inefficient. No Sn or Lg is specified when neither Sn nor Lg is
observed above the noise level of the seismogram. At times for short epicentral
distances (< 6%$circ$), the presence of a Pg wavetrain with frequencies comparable
to Sn made it difficult to determine the presence or absence of Sn. Therefore, when
Pg obscured the seismogram at the expected arrival time of Sn and no obvious Sn
energy existed on the seismogram, we classified Sn as not observed. Examples of
regional, broadband seismograms have been provided in Figures 3 and 4. Figure
5 shows seismograms of nuclear explosions from the Semipalatinsk and Lop Nor
test sites recorded at WMQ and TLY, as well as local earthquakes in the Lop Nor
area. Figure 6 is a map of the event locations from the seismograms of Figure 5.

4. Results

4.1 Regional Sn Propagation in China

The propagation efficiencies of the regional phase Sn are ranked as efficient,
inefficient and not observed and are mapped in Figures 7-9, respectively. The
maps clearly show that there is a large variation in the transmission efficiency of
Sn in China. We have examined the differences in the propagation efficiencies
through the diverse tectonic provinces and have summarized them on a region to
region basis. As seen on seismograms recorded at station LSA (Figure 3,
Seismograms A and B), Sn propagates efficiently across the Himalayas and
throughout southern Tibet. However; the upper mantle beneath north-central Tibet
severely attenuates the Sn phase. Seismogram C in Figure 3 shows no Sn energy
from paths crossing the north-central portion of the plateau. This region of poor
Sn propagation was observed earlier by Ni and Barazangi (1983) and McNamara
et al. (1995). For those ray paths propagating across the eastern portion of Tibet
and the Songpan Fold System (FS), Sn waves are attenuated on data recorded at
ENH (Seismogram D).

The Tien Shan Fold System and Tarim Platform in western China allow
mostly efficient Sn propagation (Figure 7). An event recorded at WMQ, which
shows efficient Sn transmission across the Tarim Platform, is provided in
Seismogram E. Ray paths originating from earthquakes in the Kunlun Fold System
show both efficient and inefficient Sn as observed at LZH and WMQ (Figures 7
and 8). Seismogram F, from LZH, is a waveform recording efficient Sn from the
Kunlun FS through the Qaidam Basin. Seismogram G records inefficient Sn at
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Figure 6. A map of station-event paths for nuclear explosions and earthquakes in the
Lop Nor test site region and from the Semipalatinsk test site. Small letters represent
locations of the seismic events depicted on seismograms from Figure 5.
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Figure 7. A map of efficient Sn propagation paths in China. The squares represent seismic
events. The solid lines depict efficient station-event paths in the regions of study. All paths have
epicentral distances between 2° and 15° and all events are less than 50 km deep with body wave
magnitudes greater than 4.3. Capital letters represent letters represent locations of the
earthquakes depicted on seismograms from Figure 3 and 4.
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Figure 8. A map of inefficient Sn propagation paths in China. Dashed lines represent inefficient
station-event paths.
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Figure 9. A map depicting the station-event paths where no Sn phase was observed or where Sn
was severely attenuated. For this case, propagation paths are represented by dotted lines.
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WMQ from the same area. There are discrepancies in the data from earthquakes
located in the Pamirs recorded at WMQ. While Sn is mostly inefficient or not
observed in the region (Figures 8 and 9), there are a few paths where Sn is efficient
(Figure 7). Seismogram H is a typical example of no Sn from a Pamir earthquake.
There could be several reasons for the discrepancies in the Sm propagation
efficiencies. The efficient Sn could be from sub-crustal earthquakes with
mislocated depths, or perhaps the ray paths for Sn were deep enough to avoid
shallow upper mantle melt or heterogeneities in western Tien Shan.

Sn is attenuated through the Songpan Fold System, part of the north-central
Tibetan Plateau and Burma region (Figure 9). Data from this region was recorded
by stations LSA, LZH, XAN, ENH, KMI and CHTO. Seismogram I from KMI
with a propagation path across Burma shows no Sn phase. The continental
extension of the Andaman back-arc into Burma does not transmit Sn (Figure 9),
which was noted previously by Molnar and Oliver (1969). Seismogram J at QIZ
shows poor Sn propagation beneath Indochina. Further south in the Andaman Sea,
earthquakes located on the northeast side of the oceanic ridges (Seismogram K)
show efficient Sn, while those events to the southwest and away from the ridges
show no observed Sn (Seismogram L).

For a ray path entirely within the western Yangzi Paraplatform, Sn is mostly
efficient (Seismogram M). Sn is attenuated when it passes through the South China
Fold System from Taiwan to station ENH (Seismogram N). In central China,
efficient Sn is observed for propagation paths through the Quinling Fold System
to LZH (Seismogram O). For ray paths under the Sino-Korean Platform, Sn
transmission is efficient (Seismogram P). Sn waves traveling west of the Ryukyu
arc under the continental margin to SSE are efficient although not emergent
(Seismogram Q). Attenuation of Sn by the mantle between the Japan Arc and
Manchuria is observed at MDJ (Seismogram R).

A new observation concerning the Sn regional phase in Asia is that it does
not propagate efficiently beneath the Mongolian Plateau. Seismograms from
stations in Russia (TLY) and China (WMQ and BJI) show no Sn arrival for
propagation paths traversing the plateau (Figure 9, Seismograms S and T). For ray
paths crossing the long of axis of the Baikal Rift to station TLY, no Sn phases are
detected (Seismogram U). In northeast China at station HIA, Sn is observed for a
path propagating through the Siberian Platform and Argun Fold System
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(Seismogram V). Paths in the Inner Mongolia/Da Hinggan region show Sn energy
at HIA (Seismogram W).

Data from three nuclear explosions recorded at WMQ and TLY, two from
Lop Nor and the other from Semipalatinsk, are provided in Figure 5 (Seismograms
a, b, and d). Figure 6 shows a map of the locations of these nuclear explosions and
earthquakes. The waveforms from these explosions have a high-frequency content
but no observed Sn phase. Seismogram c is a waveform of an earthquake with a
similar backazimuth and epicentral distance as the Lop Nor explosion (Seismogram
b) at WMQ. The earthquake exhibits more long-period energy than the nuclear
explosion. Sn and Lg signals on Seismograms b and c arrive very close together
and may be interpreted as Sg for the Lop Nor seismic events because of the
shortness of the station-event path (~2-3%. Seismogram e is an earthquake recorded
at TLY with an epicenter nearby Lop Nor. Sn is not observed for either the
earthquake or the explosion (Seismogram d) at TLY. It has been stated earlier that
Sn does not propagate across Mongolia/Altay Fold System for any seismic event.

4.2 Regional Lg propagation in China

The results of this Lg study will be summarized on a region to region basis
in a manner similar to the Sn results. Lg wave station-event paths are mapped
according to their efficiency in Figures 10-12. Efficient Lg is observed throughout
most regions in China (Figure 10). The major regions of Lg blockage are the inner
regions and southern boundary of the Tibetan Plateau and paths across oceanic
crust (Figure 12). Seismogram C is an earthquake from northern Tibet which
shows that Lg is completely eliminated at LSA. For a ray path parallel to the strike
of the Himalayas from India, Lg is not observed (Seismogram A). However, for
an event with a southern backazimuth (perpendicular to the strike of the
Himalayas), Lg is efficient (Seismogram B). Inefficient and efficient propagation
paths for Lg are observed within the Tibetan Plateau for epicentral distances less
than 6° from LSA (Seismogram X). This result confirms the previous observations
of McNamara et al. (1996), who saw Lg energy for events recorded within the
plateau out to 600-700 km. Other significant features of Lg blockage and
attenuation in southern and central Tibet, such as scattering and Lg Q, have been
characterized in previous studies (e.g., Ruzaikin et al., 1977; Ni and Barazangi,
1983; McNamara et al., 1996; Reese and Ni, 1996).
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Figure 10. A map of efficient Lg propagation paths in China. Solid lines depict efficient Lg ray
paths.
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Inefficient Lg
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Figure 11. A map of inefficient Lg propagation paths in China. Dashed lines represent inefficient

station-event paths.
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Figure 12. A map depicting the propagation paths where Lg was completely eliminated or
severely attenuated in China. Paths of Lg blockage are depicted by dotted lines.




Although Sn is highly attenuated through Mongolia and the Baikal Rift,
strong Lg signals are recorded there (Figure 10, Seismograms S, T, and U). Lg
is also seen for paths through the Tien Shan, Tarim Platform and Kunlun Fold
System (Seismograms E, F, and G). Data from LZH also record efficient Lg
through the Qinling Fold System (Seismogram O). Inefficient Lg may be seen for
signals traveling from the Pamirs through the Tien Shan to WMQ (Seismogram H).

For a ray path from eastern Tibet to ENH, in central China, Lg is observed
(Seismogram D). In southwest China, strong Lg waves are seen at KMI for paths
traversing the Yangzi Paraplatform to the north and Burma to the west
(Seismograms M and I, respectively). Efficient Lg is seen at ENH for paths
through southeast China from Taiwan (Seismogram N). Seismogram J shows that
Lg propagates efficiently for a long path through northern Indochina to QIZ. In
the Andaman Sea, a ray path 10° away crossing more than 100 km of oceanic crust
does not transmit Lg but a path 6° away, with the same backazimuth and not
crossing oceanic crust, does propagate Lg (Seismograms L and K, respectively).
Lg may also be weakened on the longer path by a change in the crustal waveguide
at the oceanic ridge located in the Andaman Sea.

Station SSE, on the east coast of China, records many earthquakes from the
island arcs east of China’s continental margin. Seismograms recorded at SSE from
Ryukyu events show mostly efficient and sometimes inefficient Lg arrivals.
Seismogram Q shows an efficient Lg phase from an event in the Ryukyu Arc which
travels mainly on the continental shelf, i.e. no oceanic crust. In northern China at
MDJ, Lg is significantly weakened as it crosses the oceanic basin of the Sea of
Japan (Seismogram R). Efficient Lg paths do cross the northern Sea of Japan from
events in southern Hokkaido. However, these paths do not cross a significant
amount of oceanic basin. Further inland, Lg has very large amplitudes on
seismograms collected at station HIA (Seismograms V and W). These seismograms
from HIA are from paths traversing the Argun and Da Hinggan Fold Systems.
Figure 5 provides event data for three nuclear explosions and two earthquakes.
Prominent, high-frequency Lg arrivals are seen on the explosion records
(Seismograms a, b, and d). There are two earthquakes shown which are in the
vicinity of the Lop Nor nuclear test site (Seismograms ¢ and e). A visual
inspection of these seismograms shows that the Lg/P amplitude ratios for the
explosions are far larger than the ratios for the earthquakes. The Lg coda of the
explosions also seems to be stronger and last longer than the coda for the
earthquakes (Figure 5).
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5. Discussion

The geological environment of China varies from stable continental shields
to active/reactivated mountain belts, rifts and plateaus. As a result of the diversity
of the regional geology, the high-frequency phases Sn and Lg show great lateral
variability. Summary maps of Sn and Lg propagation efficiencies have provided
insight into the crustal and mantle properties of the region and, when combined
with existing geological information, into the explanation of why these phases are
attenuated. Figure 13 is a summary map showing the major regions of efficient,
inefficient and no Sn propagation. Figure 14 is a similar summary map of Lg
propagation. Strong Sn waves are observed in the Tien Shan, Tarim Platform,
southern Tibet, Yangzi Paraplatform and the Sino-Korean Platform. Efficient
transmission is the expected result when propagation paths traverse stable shield
regions. Inefficient Sn propagation is found in Western Tien Shan, southwest
China and South China Sea. Sn attenuation or blockage occurs in north-central
Tibet, the Japan and Ryukyu Arcs, Mongolia, the Baikal Rift and Burma. The
strong Sn attenuation we observe on seismograms can be explained by a low-Q
upper mantle due to partial melt. Partial melt may result from an enriched or
refractory mantle caused by past subduction events as well as high temperatures.
Water and sediments contained within the subducted lithosphere increase the
amount of crustal material in the mantle of the back-arc region. When this
‘subducted material is subjected to the right pressure-temperature conditions, water
will be released into the mantle. This process will enhance partial melt by
effectively lowering the solidus temperature. This interpretation, which was applied
to the Iranian Plateau by Hearn and Ni (1994) and Rodgers et al. (1997), may
explain the uppermost mantle in Burma, the Ryukyu and Japan Arcs, and Mongolia.
The presence of Neogene alkali basaltic volcanism suggests that the upper mantle
beneath Mongolia was hot at least in the recent past (Tapponnier and Molnar,
1979). In terms of island arc subduction, some work has found that Sn does not
propagate on the concave side of island arcs due to a discontinuous high-Q upper
mantle layer (e.g., McKenzie and Sclater, 1968; Molnar and Oliver, 1969). We
have confirmed this result by our observation of Sn attenuation near island arc
subduction in Burma and the Ryukyu and Japan Arcs. The spatial relationship
between attenuation and volcanism in these island arc regions is consistent with the
presence of partial melt in the uppermost mantle, which would account for the Sn
attenuation. In the Baikal Rift region, evidence suggests there is a doming of the
lithosphere on top of hot upwelling asthenospheric material (e.g., Gao et al., 1994;
Logatchev and Florensov, 1978). This material in the lithospheric mantle would
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Figure 13. This is a summary map depicting the approximate regions of efficient, inefficient and
no Sn propagation in the area of study. These are based on gross characteristics and are not
definitive boundaries.
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severely attenuate Sn phases. In north-central Tibet, McNamara et al. (1995) argue
that partial melt in the uppermost mantle explains why there is inefficient Sn but
no comparable Pn attenuation. Previous studies in Tibet attributed elevated
temperatures and low-Q values to Quartenary to Recent basaltic volcanism from an
upper mantle source (e.g., Ni and Barazangi, 1983; Sengor and Kidd, 1979; Turner
et al., 1993).

Efficient Lg signals are observed throughout most of China (Figure 14).
More specific, strong Lg energy is recorded for propagation paths crossing the Tien
Shan, Tarim Platform, Yangzi Paraplatform, Burma, Mongolia and Sino-Korean
Platform. Regions of inefficient Lg are limited mostly to northern Burma, central
Tibet and the Pamirs. Lg blockage or partial blockage occurred for paths
originating from the Japan Arc and Andaman Sea and for the southern boundary
of the Tibetan Plateau (Figure 14). Lg is not expected to propagate for paths
traversing oceanic crust in regions such as the Sea of Japan and Andaman Sea.
This study could not resolve to what extent the islands of Japan themselves had on
Lg propagation. Crustal structure and thickness variations on the boundaries of
Tibet partially block Lg energy. The abrupt changes in crustal thickness in western
China and Tibet may vary from 40 to 70 km depth over distances spanning less
than a few hundred kilometers. Lg will propagate efficiently within Tibet for
distances less than 6° away from station LSA (Figure 10, Seismogram W), but for
longer distances within the plateau, Lg is weakened. = The attenuation
characteristics of southern Tibet were quantified by Reese and Ni (1996). They
found a Q, of approximately 150 at 1 Hz which is consistent with the existence of
a low velocity zone in the mid-crust beneath the plateau. This suggests that high
intrinsic attenuation in the crust is an important factor in the elimination of Lg as
well as changes in the waveguide and the crustal structure.

This data set has not been used to rigorously constrain the boundaries
between efficient and inefficient Sn and Lg propagation since the spatial resolution
was not good enough to make constraints and several regions had overlapping
efficiencies. = We did, however, successfully map the gross propagation
characteristics of these phases. This paper does have relevance to the application
and monitoring of a CTBT in China by increasing the ground truth data in this
large region and locating areas where regional seismic phases are partially blocked
or attenuated. A high-frequency Sn discriminant would not be useful in a majority
of China and its surrounding regions because of attenuation associated with the
phase (Figure 13). Even in regions where Sn is efficient, it is usually only for
short regional distances (5-8%). On the other hand, Lg is very efficient in most
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parts of China and outlying regions. Lg is blocked only for those paths crossing
oceanic crust and for paths within and around the Tibetan Plateau. Currently,
short-period ratios, which utilize the Lg arrival, are being developed for use in
western China (e.g., Hartse e al., 1996). Information learned from this study
should help in the development of discriminants and ratio methods elsewhere in
China, Indochina and Mongolia.

6. Conclusion

This investigation has increased our knowledge of the crust and uppermost
mantle beneath China. It is evident that the complex geological and tectonic
history of China has played a major role in the propagation characteristics of
regional, high-frequency seismic phases. Partial melt in the upper mantle beneath
island arc regions and locations of previous subduction events attenuates Sn signals.
In this respect, the mantle in some regions of China may be analogous to the
mantle beneath the Turkish-Iranian Plateau (e.g., Kadinsky-Cade et al., 1981;
Rodgers et al., 1997). Volcanism in north-central Tibet and in the Mongolian
Plateau provides evidence that the upper mantle beneath them is hot and partially
melted and explains why Sn does not propagate through the regions. Another
observation is that Lg is blocked when it travels across oceanic crust for more than
a few hundred kilometers. It is also completely eliminated by abrupt crustal
thickness changes and a partially melted, low-Q crust in Tibet. This study has
shown that high Sn attenuation makes use of this phase difficult for nuclear
discrimination; however, Lg could be an effective short-period nuclear discriminant
in most of China with adequate station coverage.
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